A Review of Soft Computing Techniques for Time Series Forecasting
نویسندگان
چکیده
منابع مشابه
Soft-computing techniques for time series forecasting
A b s t r a c t O n e w a y t o c o n t r a s t t h e b
متن کاملSoft-computing techniques and ARMA model for time series prediction
The challenge of predicting future values of a time series covers a variety of disciplines. The fundamental problem of selecting the order and identifying the time varying parameters of an autoregressive moving average model (ARMA) concerns many important fields of interest such as linear prediction, system identification and spectral analysis. Recent research activities in forecasting with art...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Weather Forecasting Using Soft Computing Techniques
Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time at a given location. It is carried out by collecting quantitative data about the current state of the atmosphere and past and/or present experiences. In this study Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) ...
متن کاملSoft Computing Techniques in Civil Engineering : Time Series Prediction
Soft computing techniques are applied to a huge quantity of problems spread in several areas of science. In this case, Evolutionary Computation (EC) techniques are applied, in concrete Genetic Programming (GP), to a temporary problem associated to the field of Civil Engineering. The case of study of this technique has been centered in the prediction, over time, of the behavior of the structural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9is1/99604